
17

Programming in C for the
DS80C400
Since the introduction of the TINI® Runtime Environment for the DS80C390, developers have
clamored for a way to use the power of TINI without using the Java™ language. Unfortunately, the
network stack and other features of TINI were too intertwined with the Java virtual machine and
runtime environment to be used from a C or assembly program. Later, when the ROM for the
DS80C400 networked microcontroller was designed, a suite of functionality was exposed that could
be accessed from programs written in 8051 assembly, C, or Java. Size constraints limited the
functionality in the ROM to a subset of the functionality in the TINI Runtime Environment. The
ROM would therefore be a useful starting block for building C and assembly programs because it
offers a proven network stack, process scheduler, and memory manager. Simple programs like a
networked speaker could easily be implemented in assembly language, while C could be used for
more complex programs like an HTTP server that interacts with a file system.

This article starts with a C implementation of Hello World and moves on to a simple HTTP server.
It describes how to set up the tools to write a simple tutorial program, and then demonstrates how
to make use of the DS80C400’s ROM functionality. All development was done using the
TINIm400 verification module and Keil µVision2™ version 2.37, which includes the C compiler
“C51” version 7.05.

Getting started with Keil’s µVision2

You can build a simple Hello World-style program written in C using the Keil µVision2
development suite. Follow these instructions to complete your first C application for the
DS80C400.

• Select Project->Create New
Project. Enter the name of the
project.

• The Select Device for Target dialog
will pop up. Under Data base, select
Dallas Semiconductor and the
DS80C400. Select Use Extended
Linker, and then select Use Extended
Assembler. Hit OK to continue.
Figure 1 shows the proper
configuration for this dialog.

• The dialog will ask, Copy Dallas
80C390 Startup Code to Project
Folder and Add File to Project?
Select No. We will supply our own
startup code.

• When the project window opens on
the left, open Target 1. Right click on
Source Group 1, and select Add files
to group 'Source Group 1.' In the file
dialog that pops up, change files of
type to Asm Source file. Add the file
startup400.a51. This file can be
found in the zip file at www.maxim-
ic.com/HelloWorld.

Figure 1. Select the
DS80C400 for a new Keil
µVision2 project.

18

• It is essential that the application is built for address 400000h, which corresponds to the
beginning of the flash on the TINIm400. Open the file startup400.a51 by double clicking on
it. Find the segment declaration for ?C_CPURESET?0. Make sure that this code segment is
declared at 400000h:

?C_CPURESET?0
SEGMENT CODE AT 400000h

• Additionally, there should be a “DB'TINI'” line followed by another single DB, with the
comment “Target bank.” This declaration is part of a tag that tells the DS80C400 ROM to
execute the code starting at address 400000h. This ensures that the application is built for
address 400000h, which should correspond to the beginning of the flash on the TINIm400.
Make sure that line reads:

DB 40h ; Target bank

• Create a new file. Save it as “main.c.” Write the following in that file:
#include <stdio.h>

void main()
{

printf("Test 400 Program\r\n");
while (1) { }

}

• Save the contents of this file. Right click on Source Group 1 and add the source file main.c.
The source file should now be added to the project.

• Right click on Target 1 on the left. Select Options for target 'Target 1' to view an option
dialog. The first tab selected should be Target. Change Memory Model to Large: variables
in XDATA. Change Code Rom Size to Contiguous Mode: 16MB program. Select the
check boxes for Use multiple DPTR registers and far memory type support. Under Off-chip
Code memory, add the first entry with a Start of 0x400000 and Size of 0x80000. For Off-chip
XData memory, add an entry with a Start of 0x10000 and a Size of 0x4000. Figure 2 shows
this dialog after it has been configured. Note that the last ‘0’ in 0x400000 is not displayed in
the window.

These settings are based on the memory configuration of the TINIm400 reference module,
which includes 512k of RAM at address 0 and 1M of flash at address 400000h. The starting
addresses and sizes in the Keil configuration should be changed for custom DS80C400 designs.

• Select the Output tab. Click on Create HEX File and select HEX-386 in the drop-down box.

• Press F7 to build the application. If every task was done correctly, the application should
build with no errors or warnings. A hex file should have been generated. You can now load
the application onto your board.

Loading the sample application onto the TINIm400 module

This section describes how to load the hex file produced by the Keil compiler onto the TINIm400
verification module by using the tool JavaKit.

To use JavaKit, you must have the Java Runtime Environment (at least version 1.2) and the Java
Communications API installed. The Java Runtime Environment can be downloaded at
http://java.sun.com/j2se/downloads.html, and the Java Communications API can be found at
http://java.sun.com/products/javacomm/index.html. The JavaKit tool is included with the TINI
Software Development Kit, available at www.maxim-ic.com/TINIdevkit. Instructions for running
JavaKit can be found in the file Running_JavaKit.txt in the docs directory of the TINI Software
Development Kit. If you encounter technical issues when running JavaKit, it is possible someone
already had a similar problem, which is chronicled in the archives of the TINI Interest List. You
can search the archives for this list at www.maxim-ic.com/TINI/lists.

The DS80C400’s ROM is
a useful starting block
for building C and
assembly programs
because it offers a
proven network stack,
process scheduler, and
memory manager.

19

Use this command line to have the JavaKit
talk to the TINIm400 module.

java JavaKit -400 -flash 40

Once JavaKit is running, select the serial
port you will use to communicate with the
TINIm400. Open the serial port using the
Open Port button. Then press the Reset
button. The loader prompt for the DS80C400
should print and look like this:

DS80C400 Silicon Software -
Copyright (C) 2002 Maxim
Integrated Products

Detailed product information
available at http://www.maxim-
ic.com

Welcome to the TINI DS80C400
Auto Boot Loader 1.0.1

>

From the File menu at the top of JavaKit, select Load HEX File as TBIN. Find the
helloworld.hex file that we just created, and select it. The Load HEX File as TBIN option
converts the input hex file to a TBIN file, and then loads it. This operation is faster than
loading it as a hex file because an ASCII hex file is more than twice as large as a binary file
for the same data set.

There are two ways to execute your program
once it is loaded. Since the program was
loaded into bank 40, you can type:

> B40
> X

To select bank 40 and execute the code there,
you can also type:

> E

This will make the ROM search for
executable code, a special tag signifying
that the current bank has executable code.
This tag consists of the text “TINI” followed
by the current bank number. It is located at
address 0002 of the current bank. Our Hello
World program declares this tag in the
startup400.a51 file with the following lines:

?C_STARTUP: SJMP STARTUP1
DB 'TINI' ; Tag for TINI Environment 1.02c

; or later (ignored in 1.02b)
DB 40h ; Target bank

Figure 2. The Target
Options dialog is used to
enter configuration
information for the target
platform. The configuration
shown is suitable for use
with the TINIm400 module.

Figure 3. The JavaKit
program is used to load
applications and
communicate with the
serial port of the
DS80C400.

20

Note that the SJMP STARTUP1 statement is located at address 0000 of bank 40. It is followed
by the executable tag { 'T', 'I', 'N', 'I', 40h }, located at address 0002, since the sjmp statement is
two bytes.

When you type “E,” the ROM searches downward through the memory banks for executable
code. If you type “E” and some other code executes, it means that the ROM has found an
executable tag at an address higher than 400000h, where your code was loaded. You may need to
find that tag and delete the contents of that bank. You can erase a flash bank by using the Z loader
command:

> Z41
You sure? Y

To erase all banks of flash, you need to zap from bank 40h to bank 4Fh.

Interfacing to the ROM and the ROM libraries

Calling the ROM functions from C is complicated. (The procedure for calling ROM functions is
described in the High-Speed Microcontroller User’s Guide: DS80C400 Supplement.1) Parameters
must be converted from the Keil C Compiler’s conventions to the conventions used by the ROM.
The Keil compiler passes parameters in a combination of XDATA locations and registers. The
ROM functions accept parameters in different ways. For example, the socket functions accept
parameters stored in a single parameter buffer, and many utility functions accept parameters
passed in special function registers or direct memory locations. Dallas Semiconductor wrote
libraries for accessing the ROM functions to translate from Keil calling conventions to the ROM’s
parameter conventions.

Using ROM functions in your C programs requires only importing the library and including a
header file. To import a library in your project, right click on Source Group 1 in your Keil project
window and select Add Files to Group 'Source Group 1.' Change the file filter to '*.lib' and select
the library you need to include. Then include the header file at the top of your source. You can use
any of the library functions. There are ROM libraries to support ROM initialization, DHCP client
operations, process management, socket functions, TFTP client operations, and utility functions
such as CRC and pseudo-random number generation.

Using the extension libraries

In addition to the ROM libraries, other libraries (more are still being written) provide useful
functionality not included in the ROM. Libraries have been developed for file system operations,
DNS lookups, I2C™ communication, and 1-Wire® communication.

The C Library project (including documentation, sample applications, and release notes) for the
DS80C400 can be found at www.maxim-ic.com/ds80C400/libraries.

A simple HTTP server and SNTP client application

Dallas Semiconductor wrote a small application to demonstrate the functionality of these libraries,
specifically the file system, sockets, process scheduler, and TFTP libraries. The sample application
consists of an SNTP client and an HTTP server that responds only to ‘GET’ requests. It uses the
core Dallas Semiconductor-provided libraries to call socket and scheduler functions. It also uses
the file system to store a few web pages. The application consists of two processes: (1) the HTTP
server is spawned as a new process that handles connections on port 80, and (2) the main process
sits in a loop, attempting a time synchronization approximately every 60 seconds. The source code
and project files for this application are available at www.maxim-ic.com/timeserver.

In addition to the ROM
libraries, other libraries
(more are still being
written) provide useful
functionality not included
in the ROM. Libraries
have been developed for
file system operations,
DNS lookups, I2C
communication, and
1-Wire communication.

1 Available online at www.maxim-ic.com/DS80C400UG.

21

Initializing the file system

Before the HTTP server can be started, the file system must be initialized. The demonstration
program ensures that two static files, a home page (index.html) and the source to the program
(source.html), are in the file system before the server starts.

The program initializes its file system by downloading the files it needs from a TFTP server. In
our example, a TFTP server is running at a known IP address. The files index.html and source.html
are requested from the TFTP server, then written to the file system.

SolarWinds provides a free TFTP server for Windows® platforms that was used in the
development of this demonstration. From SolarWinds’ website (www.solarwinds.net), follow the
Downloads—Free Software menu to find the TFTP server download. After installing, use the
Configure option under the File menu to configure the available files. Make sure to change the
program to use your TFTP server’s IP address (TFTP_IP_MSB, TFTP_IP_2, TFTP_IP_3,
and TFTP_IP_LSB).

The simple HTTP server

The HTTP server in this application is implemented as a simple version of an HTTP server
described by RFC 2068. In this version, only the ‘GET’ method is supported. Input headers are
ignored, and few output headers are given.

The server socket is created by calling Berkley-style socket functions, which make the server
socket easy to set up. The following code shows how our simple HTTP server creates, binds, and
accepts new connections.

struct sockaddr local;
unsigned int socket_handle, new_socket_handle, temp;

socket_handle = socket(0, SOCKET_TYPE_STREAM, 0);
local.sin_port = 80;
bind(socket_handle, &local, sizeof(local));
listen(socket_handle, 5);

printf("Ready to accept HTTP connections...\r\n");

// here is the main loop of the HTTP server
while (1)
{

new_socket_handle = accept(socket_handle,
&address, sizeof(address));

handleRequest(new_socket_handle);
closesocket(new_socket_handle);

}

Note that when a new socket is accepted, this simple application does not start a new thread or
process to handle the request. Rather it handles the request in the same process. Any HTTP server
of more-than-demonstration quality would handle the incoming request in a new thread, allowing
multiple connections to occur and be handled simultaneously. After the request is handled, close
the socket and wait for another incoming connection.

The handleRequest method consists of parsing the incoming request for a file name and
verifying that the method is ‘GET.’ No other method (not even ‘POST,’ ‘HEAD,’ or ‘OPTIONS’)
is allowed. Two file names are handled as a special case. When the file time.html is requested, the
server dynamically generates a response consisting of the latest results from the timeserver, and the
number of seconds that passed since the last instance the timeserver was queried. When the file
stats.html is requested, statistics for server uptime and the number of requests are displayed.

If the file is not found or an invalid request method is given, an HTTP error code is reported.

Compared to the TINI
Runtime Environment,
applications written in
C allow more space for
user code and data.

22

The SNTP client

The second major portion of the timeserver application is a Simple Network Time Protocol
(SNTP) client, as described in RFC 1361. This is a version of the Network Time Protocol (RFC
1305). SNTP requires UDP communication to request a time stamp from a server listening on port
123. Our timeserver uses the following code to periodically synchronize with the server
time.nist.gov. Note that when this article was written, DNS lookup was not supported, so the IP
address for the server is set manually. DNS has since been added to the C library website, and the
following code can be updated to perform a lookup for the IP address.

socket_handle = socket(0, SOCKET_TYPE_DATAGRAM, 0);

// set a timeout of about 2 seconds.
//‘timeout’ is unsigned long
timeout = 2000;
setsockopt(socket_handle, 0, SO_TIMEOUT, &timeout, 4);

// assume ‘buffer’ has already been cleared out
buffer[0] = 0x23; // No warning/NTP Ver 4/Client

address.sin_addr[12] = TIME_NIST_GOV_IP_MSB;
address.sin_addr[13] = TIME_NIST_GOV_IP_2;
address.sin_addr[14] = TIME_NIST_GOV_IP_3;
address.sin_addr[15] = TIME_NIST_GOV_IP_LSB;
address.sin_port = NTP_PORT;
sendto(socket_handle, buffer, 48, 0, &address,

sizeof(struct sockaddr));
recvfrom(socket_handle, buffer, 256, 0, &address,

sizeof(struct sockaddr));
timeStamp = *(unsigned long*)(&buffer[40]);
timeStamp = timeStamp - NTP_UNIX_TIME_OFFSET;
// now we have time since Jan 1 1970
formatTimeString(timeStamp, "London",

last_time_reading_1);
last_reading_seconds = getTimeSeconds();
closesocket(socket_handle);

A datagram socket is first created and given a timeout of about 2 seconds (0x800 = 2048ms).
This ensures that if the communication fails with our chosen server, we will not wait indefinitely
for a response.

The next line sets the options for the request. These bits are described in Section 3 of RFC 1361.
The value 0x23 requests no warning in case of a leap second, requests that NTP version 4 be used,
and states that the mode is ‘Client.’ After we send the request and receive the reply using the
common datagram functions sendto and recvfrom, the seconds portion of the time stamp
value is assigned to the variable timeStamp, and then adjusted to the reference epoch January
1, 1970. The function formatTimeString is used to convert the time stamp into a readable
string, such as “In London it is 15:37:37 on March 31, 2003.”

The function getTimeSeconds is used to determine the last time update, based on the
DS80C400’s internal clock. Since the program only updates about once every 60 seconds, the
HTML page time.html uses this value to report the interval since the last time update. Finally, the
socket is closed and the SNTP client goes to sleep for another 60 seconds.

A datagram socket is
first created and given
a timeout of about
2 seconds (0x800 =
2048ms). This ensures
that if the communi-
cation fails with our
chosen server, we will
not wait indefinitely
for a response.

23

Conclusion

The Keil C Compiler and libraries provided by Dallas Semiconductor allow applications written
in C to access the power and functionality formerly only accessible through TINI’s Java
environment. Programs written in C can now access the network stack, memory manager, process
scheduler, file system, and many other features of the DS80C400 networked microcontroller.
Additionally, applications written in C allow more space for user code and data, compared to the
TINI Runtime Environment. Developers using the C language for the DS80C400 can write lean
applications with plenty of speed, power, and code space to tackle any problem.

TINI and 1-Wire are registered trademarks of Dallas Semiconductor.
Java is a trademark of Sun Microsystems.
µVision2 is a trademark of Keil Software, Inc.
I2C is a trademark of Philips Corp. Purchase of I2C components of Maxim Integrated Products, Inc., or one of its
sublicensed Associated Companies, conveys a license under the Philips I2C Patent Rights to use these components in an
I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
Windows is a registered trademark of Microsoft Corp.

Developers using the
C language for the
DS80C400 can write
lean applications with
plenty of speed, power,
and code space to
tackle any problem.

